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Abstract

The cosmological constant and hierarchy problems remain a thorn in General Relativity’s
side. Physicists have been studying modifications of Einstein’s theories for almost as long
as they have existed and in this paper we present a particular variation that could poten-
tially solve the aforementioned problems. We will study the Randall-Sundrum 1 model
and demonstrate how the warping of the 5-dimensional bulk can eliminate the hierarchy
between the fundamental scales. We introduce a bimeric theory of gravity and show that
under certain constraints, a theory of non-trivially interacting massive and massless gravi-
tons can be constructed that would negate the need for a dark energy component. We
then incorporate the two models addressing both the cosmological constant problem and
the hierarchy problem simultaneously. We outline a potential method for deriving viable
solutions in the combined theory and discuss the implications and limitations of such a
model.
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Chapter 1

Introduction, Motivation, and
Summary

1.1 General Relativity

General relativity or GR, formulated by Albert Einstein in 1915[10], fundamentally al-
tered the prevailing understanding of gravity and was a leap of insight that revolutionised
physics. It replaced the Newtonian description of gravity with a geometric interpreta-
tion, where gravitation arises from the differential geometry of curved spacetime as it
is warped by the distribution of mass and energy placed inside it. At the time of its
introduction, physicists were grappling with the limitations of classical mechanics and
electromagnetism, which had been shown to be inconsistent with one another. Special
relativity, the predecessor to the general theory, reconciled these issues with the establish-
ment of the invariance of the speed of light. General relativity extended these principles by
incorporating gravity into the framework of spacetime. Einstein’s field equations, which
are the core of general relativity, are a set of ten partial differential equations that connect
the spacetime metric tensor to the stress-energy-momentum tensor. These equations offer
a highly non-linear, intricate description of gravitation, in stark contrast to the linear,
action-at-a-distance picture provided by Newtonian gravity. The superior nature of gen-
eral relativity was further demonstrated by its ability to resolve long-standing issues, such
as the anomalous precession of Mercury’s perihelion, which defied explanation within the
Newtonian framework. Additionally, general relativity predicted novel phenomena, such
as gravitational time dilation, frame-dragging, and the existence of event horizons in black
holes. These predictions have since been confirmed through various experimental and ob-
servational evidence, solidifying general relativity as the prevailing theory of gravity[2].
Despite the obvious successes of General Relativity, there exist problems that the theory
fails to answer, suggesting that general relativity requires modification.

1.2 Two Key Challenges in Gravitational Physics

Despite its successes, general relativity is not perfect and encounters problems that it
fails to address. Two notably persistent issues that continue to challenge researchers
are the cosmological constant problem[26] and the hierarchy problem[24]. These failures
have become a driving force for modern physicists, motivating them to investigate new
modifications to General Relativity. The ultimate goal is to find plausible answers to
these perplexing questions, paving the way for a new field in theoretical research referred
to as modified gravity. The cosmological constant problem and the hierarchy problem in
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particular are central to the ideas we explore in this paper, making it essential to gain an
understanding of the nature of these two problems and their significance in the field of
modified gravity.

1.2.1 The Cosmological Constant Problem

If we study the observations used to estimate the expansion of the Universe, such as Type
1A Supernovae [31], we see the expansion of the universe to be accelerating with a small
value of the cosmological constant and is in accordance with a cold Dark Matter scenario
where the vacuum energy density is roughly Λobs = 10−120MPL [18], when measured in
Planck units, and presents a contradiction between theory and observation. In Quantum
Field Theory, we know that vacuum energy refers to the underlying background fluctua-
tions that exist in empty space, even in the absence of matter or radiation. The concept
arises from the principles of Quantum Field Theory of the standard model, which de-
scribes particles and their interactions through the framework of fields that permeate all
of spacetime. These fields exhibit fluctuations even in their lowest energy state, known
as the vacuum state. As a consequence, the fields exhibit a non-zero, minimal amount
of energy called zero-point energy that we can calculate, sum together and find the ex-
pected vacuum energy density. Herein lies the problem[26]. The implication of General
Relativity, mass-energy equivalence, suggests that if there is a vacuum energy then it
should warp spacetime, produce a gravitational force, and contribute to the cosmological
constant. Performing such a calculation gives us the theoretical expectation value for the
cosmological constant to be Λtheory = 10−60MPL [43], a concerning 60 orders of magnitude
larger than the observed value. This contradiction has concerned physicists for decades
and has been referred to as the largest discrepancy between theory and experiment in
all of Physics, and became known as the Cosmological Constant problem. Furthermore,
there is no possible dynamical solution to the cosmological constant problem that exists
within General Relativity and is evidence that we need to modify it if we wish to find such
a solution. Many theories of modified gravity look to produce self-accelerating solutions,
which would explain the acceleration of the expansion of the universe without the need
for a dark energy component.

1.2.2 The Hierarchy Problem

The Hierarchy problem is the name physicists give to several problems concerning the
energy scales of the fundamental forces, and the hierarchy between them. In particular,
we ask why there is such a large difference between the size of the Planck scale, Mpl ≈
1018GeV, and the weak scale, Mew ≈ 103GeV[24].

Another description of the hierarchy problem arises when we consider the discrepancy
between the observed value of the Higgs mass and the Planck mass. Using the quantum
field theory of the standard model, we know the non-zero Higgs field is responsible for
providing the Fermions with mass terms. We can calculate the mass of the Higgs particle,
where we expect the mass to receive contributions of all energy scales up to the cutoff
energy, the Planck scale, beyond which the Standard Model begins to break down [34].
Then an obvious choice for the scale of the Higgs mass would be the Planck mass. However,
observation shows the Higgs mass to be around 250GeV[24], which is of the order of
the Weak scale and shows another contradiction between theory and observation. This
contradiction and the discrepancy between the Planck Scale and the weak scale is the
Hierarchy problem. Physicists are yet to find an explanation for the hierarchy that exists
between the fundamental energy scales and this remains a primary motivation for modified
theories of gravity. There have been different approaches to solving the problem. One
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approach, and the approach taken in this paper, is through higher dimensional theories of
modified gravity where we can create a scenario in which gravity permeates D dimensions
whilst confining all other fundamental forces to aD−1 dimensional sub-manifold. We then
study the behaviour of gravity in such a framework, hoping to eliminate the hierarchy at a
fundamental level whilst obtaining an effective theory that reproduces it and is consistent
with observation. Specifically, we will look at the Randall Sundrum model, a braneworld
scenario, where a potential solution to the hierarchy problem can be found.

1.3 Modifying Einstein

These challenges, among others, have prompted physicists to explore modifications to
the theory that either eliminate the problems or provide a natural explanation for their
existence and, after more than a century from the release of Einstein’s original papers,
there are now a plethora of proposals of modified theories. One of the relatively simpler
examples of such theories is f(R) gravity, which modifies the Einstein-Hilbert Action[11],

S =
1

2κ

∫
R
√
−gd4x (1.1)

by, unsurprisingly, replacing the linear dependence on the Ricci scalar with a more general
function, f(R), as follows

S =
1

2κ

∫
f(R)

√
−gd4x (1.2)

As such, f(R) is actually a family of many different theories that make different choices for
this function. The implications of this seemingly subtle change are dramatic, as it results
in vastly different field equations that are fourth-order in the metric tensor derivatives,
in contrast to the second-order equations in General Relativity and suggests early and
late-time universe expansion without invoking dark matter or dark energy. f(r) is not
experimentally viable however and we can show this from the modified Einstein-Hilbert
action (1.2). Rewriting the Ricci-scalar function using a Lagrange multiplier,

S =

∫
d4x

√
−g
[
f (ϕ)− λ (R− ϕ)

]
(1.3)

If we vary with respect to λ we recover (1.2), however varying with respect to ϕ yields

f ′ (ϕ)− λ = 0 (1.4)

We can substitute this back into (1.3) we are left with,

S =

∫
d4x

√
−gf ′ (ϕ)R+

[
f (ϕ)− f ′ (ϕ)ϕ] (1.5)

Which is just a scalar-tensor theory or Brans-Dicke theory with w = 0 and is not ob-
servationally viable[6]. This is an example that we should bear in mind as we consider
our theory of modified gravity. We must take care when constructing our model to avoid
instabilities like ghosts and ensure they fall in line with experimental observations.

1.3.1 Higher-Dimensions

A second famous modification made to gravity was a forerunner in a class of theories
that invoke higher dimensions and is known as Kaluza-Klein theory. Its origins date
back almost as old as Relativity itself when, in 1919, a German Physicist by the name of

4



Theodor Kaluza was studying Einsteins’ equations and realised that if he were to solve
them in 5-Dimensions, as opposed to the conventional 4, then Maxwell’s equations for
Electromagnetism emerge naturally from the analysis [21]. Shocked by this unexpected
result, Kaluza wrote to Einstein to share his discovery who encouraged him to publish
his findings, which Kaluza later did. Surprisingly, however, Kaluza’s work was not picked
up by other Physicists of the time and it wasn’t until 1926 when Oscar Klein contributed
a quantum formulation of the theory for the field to gain more significant interest. In
his original theory, Kaluza added a constraint called the cylinder condition that forbids
any component of the new 5-dimensional metric from depending on the introduced 5th
dimension, which was necessary for two reasons. Firstly, the corresponding field equations
become vastly more complex without it and, secondly, normal 4-dimensional gravity seems
to exhibit this condition naturally. The constraint was later given the physical interpreta-
tion by Klein who suggested it implied the 5th dimension was small, compact, and curled
up on the scale of around 10−33cm [23]. Klein’s quantum interpretation also introduced
so-called ”Kaluza-Klein modes” which are the quantised vibrational modes or excitations
of fields (such as the electromagnetic field) that exist in this extra compact dimension,
with different modes corresponding to different energy levels. These modes manifest as
discrete particles or fields in our familiar four-dimensional spacetime. Kaluza-Klein es-
tablished itself as a pioneering theory, laying the foundation as a precursor for numerous
contemporary scientific investigations.

Higher-dimensional theories have remained in vogue in the decades since, but inter-
estingly, one of the most well-known uses of extra dimensions today emerged entirely by
chance. During the 1960s, physicists at CERN were working to try and understand the
strong interaction[29]. Whilst there was already a theory that worked very well at this
point, Quantum Electrodynamics, the issue was that this theory only applied to the inter-
actions between electrons and photons and not the ever-growing class of Hadrons that were
being discovered. The ’accident’ that these investigations resulted in was String theory
and, although having to overcome many pitfalls and challenges along the process, it was
fine-tuned into the controversial but promising framework for Unification that it is today.
Higher dimensions arose naturally from the development of string theory as a necessity for
it to be fully consistent with General Relativity. In fact, modern M-Theory (the overarch-
ing structure that encompasses numerous string theories) is an 11-Dimensional theory[27]
that generalises Kaluza-Klein such that the extra dimensions are small and compactified.
The study of strings also brought about the implementation of mathematical objects called
Branes which have been employed in various incarnations within the field, including the
research presented in this paper. Braneworlds, or ”branes”, are theoretical hypersurfaces
of varying dimensions that can be treated as surfaces that are embedded within the higher-
dimensional structure of spacetime. A crucial property of branes in String Theory is their
ability to satisfy Dirichlet boundary conditions by serving as the boundaries of open strings
where the strings’ endpoints are on the branes [33]. This aspect is particularly significant
when attempting to explain how fundamental forces such as electromagnetism, and weak
and strong nuclear forces are restricted to our four-dimensional spacetime, while gravity
can operate across all dimensions. In the context of M-Theory[27], the ”Braneworld”
scenario is considered, where our four dimensions are envisioned as existing on a brane
embedded within a larger 11-dimensional manifold, known as the Bulk. The dynamics of
branes are governed by a set of equations derived from the principle of least action, which
considers the tension or energy of the brane and any external fields acting on it. Branes
are an essential concept in modern theoretical physics, providing a versatile framework for
investigating the structure and interactions of particles and forces in a higher-dimensional
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spacetime.

1.3.2 Randall-Sundrum

The Braneworld scenario is central to the ideas in this paper. In particular, we consider the
Randall-Sundrum Braneworld models, Randall-Sundrum 1 (RS1) and Randall-Sundrum
2 (RS2), released in two forms over two papers in 1999 titled ”A Large Mass Hierarchy
from a Small Extra Dimension”[36] and ”An Alternative to Compactification”[35]. Each
paper proposed a similar but distinct Braneworld model that envisions our Universe as
existing on a (3+1)-dimensional Brane that is embedded within a 5-dimensional Bulk that
is warped drastically. The model of the first paper, RS1, comprises two branes, at fixed
points in the manifold, separated by a finite slice of AdS5 space, with the branes forming
the domain walls to this space and the bulk exhibiting Z2-symmetry centered on each of
the branes.

Figure 1.1: The RS1 Model[13].

One brane is called called the Planck Brane, where gravity is much stronger, and the
other is called the Tevbrane, where gravity is much weaker and also where our universe
and the Standard model fields are localised. Gravity is much weaker on the Tevbrane
due to the presence of a warp factor introduced into the metric for the model. Gravity
is not confined to the branes but is instead allowed to freely propagate into the extra
dimension and the large warping of the Bulk in this model presents a solution to the
hierarchy problem.

The second model, RS2, differs from RS1 because brane separation is extended to
infinity. The Tevbrane is effectively removed from the physical model and so we are left
with a single brane, the Planck Brane, with the bulk exhibiting the same Z2-symmetry
centered about it. In this model, our universe exists on the remaining brane with the
important distinction that the graviton’s probability function does not fall as we move
away from the Planck brane as it does in RS1 but is instead bound to the single brane.
The RS2 model is interesting as it demonstrates how Newton’s 4-Dimensional gravity can
be recovered in a 5-Dimensional model without the need for the extra dimension to be
small. This is of particular interest for the AdS/CFT conjecture, though it will not be
explored in this paper.

The Randall-Sundrum Braneworld scenarios are set apart from other higher-dimensional
theories as they involve a unique solution to Einstein’s equations. Specifically, a non-
factorisable metric of the form

ds2 = dz2 + a2(z)qµν(x)dx
µdxν (1.6)
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where the metric for xµ and xν is not independent of the coordinates of the 5th additional
dimension of the bulk, z, which was prohibited in other theories like Kaluza-Klein with
the introduction of the cylinder condition. The dropping of this assumption is essential
for the natural hierarchy mentioned previously, as we shall see later on in our analysis of
the RS1 model.

Figure 1.2: A Plot of the Warp Factor in the RS1 Model, where rc is the distance form
the brane centered at y = 0 [34].

1.3.3 Massive and Bimetric Gravity

Introduced by Wolfgang Pauli and Markus Fierz in the first half of the 20th century [12],
massive gravity is a deformation away from classical GR by providing the graviton with a
mass term.
As a modified theory of gravity, massive gravity looks to solve the problems that general
relativity is faced with. Many theories of modified gravity often face criticism when at-
tempting to solve the cosmological constant problem since most proposed solutions don’t
explain where the small value of the cosmological constant has come from. Solutions are
often unnatural and rather just shift the fine-tuning of the constants into other param-
eters [18]. Massive gravity might have a natural solution to the cosmological constant
problem. If a parameter is technically natural, it will have a symmetry that appears as
the parameter tends towards zero and protects it against quantum corrections. Massive
gravity introduces a mass term to the graviton which breaks the gauge symmetry of GR
which we know to be general coordinate invariance. As we set the graviton mass back
towards zero we recover general coordinate invariance, introducing a gauge symmetry that
protects against quantum corrections and allows us to find a technically natural solution
to the cosmological constant problem. This unique feature makes massive gravity an at-
tractive area of research in the ongoing quest to better understand the fundamental nature
of gravity and its role in shaping the universe.

Since Fierz and Pauli, massive gravity has become a field of research with many dif-
ferent variations and approaches, introduced to solve the issues that earlier theories en-
countered. Discontinuities and instabilities plagued Fierz-Pauli and other early theories,

7



requiring new liberating theories like the de Rham-Gabadadze-Tolley (dRGT) theory of
massive gravity [38] [39].
In this project, we are interested in looking at the ”Bimetric” extension of Massive gravity
in particular. Bimetric gravity is a class of modified gravitational theories that incorporates
two interacting metrics in the Einstein-Hilbert action and its history traces back to the
early 20th century, following the success of General Relativity when Physicist Nathan
Rosen[40][41], a collaborator of Einstein, proposed a model of spacetime where for every
point there were two associated metrics. The idea of extending the single metric of General
Relativity to add an additional ”fiducial” metric has attracted attention from several
researchers over the years, with various iterations of models being proposed [28]. The
primary motivation behind these models has been to address unresolved questions in
cosmology and astrophysics, such as the nature of dark energy, dark matter, and the
Cosmological Constant problem mentioned previously. Bi-metric theories experienced
renewed interest in the late 20th and early 21st centuries due to de Rham, Gabadadz and
Tolley’s new formulation and remains one of the forerunning theories in Massive Gravity.

1.4 An Outline of our Work

This paper focuses on finding a viable phenomenology of a bimetric theory of gravity in the
Randall - Sundrum 1 braneworld scenario. We begin by introducing the Randall-Sundrum
braneworld models in Chapter 2, focusing heavily on the RS1 model. In this chapter, we
set up the RS1 model before looking at the dynamics of spacetime in the bulk and discuss
a solution to the hierarchy problem and end the chapter with a brief discussion of the
RS2 model. In Chapter 3, we introduce theories of massive gravity and aim to provide
some motivation for their study. We will discuss some of the prerequisites to bimetric
gravity and end the chapter by exploring bimetric theory in depth. Chapter 4 will aim to
incorporate bimetric gravity into our RS1 braneworld scenario. We decouple one metric
from matter and first look to find solutions when there are no interactions between the
two metrics. We then introduce the interaction terms by perturbing the non-interacting
case and aim to derive background solutions. Currently, no solutions have been found in
the interacting case, if solutions are found this constitutes novel research. In Chapter 5 we
will present a summary of our findings along with an analysis of its successes and potential
pitfalls. We will discuss potential routes for experimental verification and suggest avenues
for future research.
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Chapter 2

Randall-Sundrum Braneworlds

The Randall-Sundrum (RS) braneworld models have gained significant attention in theo-
retical research due to their innovative approach to solving the hierarchy problem and pre-
senting an alternative to conventional compactification schemes. Moreover, RS braneworlds
hold crucial conceptual significance in braneworld-related studies and are frequently en-
countered in advanced areas of physics, including holography, conformal field theory, super-
symmetry, and other frontiers of the field. As a result, RS braneworlds have become a focal
point in modern physics. This chapter will establish the foundations of RS braneworld
models whilst highlighting their unique attributes. We study a generalisation of RS1,
where we allow the branes to have intrinsic curvature, and present the dynamics of the
bulk. We then present a solution to the hierarchy problem and end the chapter with a
discussion of the RS2 model.

2.1 RS1

To begin, let us first set up the framework for our Randall-Sundrum 1 (RS1) model. The
RS1 model introduces an extra dimension, z, to our 4d universe. The extra dimension is
compactified on an S1/Z2 orbifold, so that it has circular S1 topology with fixed radius
and a ’mirror’ Z2 symmetry about its end points, so that both sides of the circle are
in equivalence. We have two key points in the orbifold, z = z1 and z = z2, where a
domain wall is fixed at each point. These domain walls are 3-branes, 4d submanifolds
with 4d brane coordinates {ζµ}. The extra dimension z points tangential to the branes
and therefore the {ζµ} coordinates. Each brane will have an associated metric, γ1 and γ2,
where the index identifies the brane.

We will label the brane at z1 as the Planck brane and the brane at z2 the TeV brane.
We imagine that we are observers inside the TeV brane, which comprises the 4d universe
we experience and exist in. All standard model fields are bound to the TeV brane, but
gravity can freely propagate into the extra dimension. The 5d space between the Planck
brane and the TeV brane is known as the bulk.

This model will consider configurations of the form,

ds2 = N2(z)dz2 + a2(z)qµν(x)dx
µdxν (2.1)

where we have a 4d non factorisable, maximally symmetric metric qµνdx
µdxν with extrinsic

curvature λ, scaled by a ’warp factor’ a(z), which is a function of our extra dimension.
The extra dimension is scaled by a lapse function N(z), which controls the size of the extra
dimension. We identify our coordinate system Xa = (xµ, z) and our brane coordinates
ζµ = xµ e.g at z = z1, the brane metric γ1µν = a2(z1)qµν(x). Note that we use the
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notation convention that Greek indices denote four-dimensional coordinates and Latin
indices denote five-dimensional coordinates.
From (2.1) we obtain the metric tensor

gab = a2(z)qµν + δzaδ
z
bN

2(z) (2.2)

The action for the model is as follows [35],

S =

∫
d5x

√
−g

{
M3

5

2
R− 2Λ

}
+ Sbranes (2.3)

The first part is an Einstein - Hilbert term, describing the dynamics of an empty Bulk with
the addition of a 5d cosmological constant term, Λ, where g = det(gab) is the determinant
of our metric (2.1), M3

5 is the 5-dimensional Planck mass and R is a 5d Ricci scalar. The
final term, Sbranes, is the action for our branes and is defined as

S = −σ1

∫
d4ζ

√
−γ1 − σ2

∫
d4ζ

√
−γ2 (2.4)

Where the branes each have a constant energy density known as the brane tensions, σ1
and σ2, and

√
−γ1 and

√
−γ2 are the determinants of the metrics on those branes.

Using this assignment, and the properties of the determinant, our action becomes

S =

∫
d5xNa4

√
−q

{
M3

5

2
R−2Λ

}
−σ1

∫
d4x

√
−qa4(z1)δ(z−z1)−σ2

∫
d4x

√
−qa4(z2)δ(z−z2)

(2.5)
where a4(z1) = a4(z2) to satisfy continuity conditions on the brane, and we can relabel
both terms simply as a4(z) since the terms will only appear when we are on the branes
due to the presence of the accompanying delta functions. Applying this relabelling, the
action is

S =

∫
d5xNa4

√
−q

{
M3

5

2
R− 2Λ

}
− σ1

∫
d4x

√
−qa4δ(z − z1)− σ2

∫
d4x

√
−qa4δ(z − z2)

(2.6)
Throughout this paper, it is worth noting that we may suppress a(z) and N(z) simply to
a and N . This is to simplify notation and in no way changes the structure of either the
warp or lapse function.

2.1.1 The Ricci Scalar

To analyse our action we need to find the Ricci Scalar, R. First, we need to find the
Christoffel connections which will allow us to derive the Ricci tensor and eventually
the Ricci scalar. We will employ our usual syntax, where Greek indices represent four-
dimensional components and Latin indices represent five-dimensional components. See
the appendix for full details of the calculation. Using (2.1), we find the useful properties

⇒ gab = gab(z)

⇒ ∂µgab = 0, gzµ = 0, gzµ = 0
(2.7)

Then we can identify all non-zero Christoffel connections

Γµ
αβ =

1

2
qµγ(∂βqαγ + ∂γqβα + ∂αqγβ) (2.8)
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Γz
µν = −a′a

N2
qµν = − a′

aN2
gµν (2.9)

Γµ
zν = Γµ

νz =
a′

a
δµν (2.10)

Γz
zz =

N ′

N
(2.11)

All other Christoffel connections are vanishing. We have all the necessary ingredients to
construct the Ricci tensor, Rac, found by contracting the Riemann tensor, Rb

abc.

Rac = −∂aΓ
b
bc + ∂bΓ

b
ac + Γe

caΓ
b
be − Γe

cbΓ
b
ae (2.12)

By inspection, Rµz = Rzµ vanishes. Then, to calculate the full Ricci tensor we only need
Rµν and Rzz. Using (2.8), (2.9), (2.10), (2.11) and (2.12), we find

Rzz = 4
N ′

N

a′

a
− 4

a′′

a
(2.13)

Rµν = qµν

(
3λ− a′′a

N2
− 3

(
a′

N

)2

+
a′aN ′

N3

)
(2.14)

By contracting the Ricci tensor with the inverse metric, gab, we can calculate the Ricci
scalar

R = gabRab = gµνRµν + gzzRzz (2.15)

which yields

R =
12λ

a2
− 12

(
a′

a

)2 1

N2
+ 8

N ′

N3

a′

a
− 8

a′′

a

1

N2
(2.16)

We now substitute the explicit form of the Ricci scalar into (2.6) to obtain a complete
action of our model.

S =

∫
dzd4x

√
−g

[
−2Λ +

M3
5

2

(
12λ

a2
− 12

(
a′

a

)2 1

N2
+ 8

N ′

N3

a′

a
− 8

a′′

a

1

N2

)]

−σ1

∫
d4x

√
−qa4(z)δ(z − z1)− σ2

∫
d4x

√
−qa4(z)δ(z − z2)

(2.17)

2.1.2 EOMs for a(z) and N(z)

Now that we have the explicit action for our model we can proceed with deriving our
equations of motion for the Warp factor and lapse function. This analysis will give us
insight into the geometry of the Bulk and will lead us towards a relationship between the
tension of the branes and the cosmological constant and further still a solution to the
Hierarchy problem. Recalling our action in (2.17)

S =

∫
dzd4xNa4

√
−q

(
− 2Λ +

M3
5

2

(
12λ

a2
− 12

(
a′

a

)2 1

N2
+

8N ′

N3

(
a′

a

)
− 8

N2

(
a′′

a

)))
−
√
−qσ1a

4(z)δ
(
z − z1

)
− σ2a

4(z)δ
(
z − z2

)
(2.18)
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we can identify the Lagrangian

L = Na4
√
−q

(
− 2Λ +

M3
5

2

(
12λ

a2
− 12

(
a′

a

)2 1

N2
+

8N ′

N3

(
a′

a

)
− 8

N2

(
a′′

a

)))
−
√
−qσ1a

4(z)δ
(
z − z1

)
− σ2a

4(z)δ
(
z − z2

)
(2.19)

which allows us to use the Euler-Lagrange equation for dependence on second-order deriva-
tives (See Appendix A for details on the derivation),

∂L
∂Y

− d

dt

(
∂L
∂Ẏ

)
+

d2

dt2

(
∂L
∂Ÿ

)
= 0 (2.20)

This analysis yields the equation of motion for a(z) (see appendix B for details on the
derivation)

−2NΛ + 3M3
5

{
λ

a2
−
(
a′

a

)2 1

N
+
N ′

N3

(
a′

a

)
− 1

N2

(
a′′

a

)}
= (2.21)

− σ1a
3(z)δ

(
z − z1

)
+ σ2a

3(z)δ
(
z − z2

)
We can simplify this further via a re-scaling of our z coordinates. Looking back at the
configuration of our metric, (2.3), we consider the transformation

z −→ f(z) (2.22)

which is just a coordinate transformation. Applying this transformation to our metric
EQUATION, we get

ds2 = N2(f(z))f ′2dz2 + a2(f(z))qµν(x)dx
µdxν (2.23)

= Ñ2(z)dz2 + ã2(z)qµν(x)dx
µdxν (2.24)

where we see that the form of a(z) term is unchanged and is guage invariant. The N(z)
term, however, is not gauge invariant and so we can choose f(z) such that Ñ(z) = 1. This

further implies that ˙̃N(z) = 0 and so our equation of motion reduces to

− 2Λ + 3M3
5

{
λ

a2
−
(
a′

a

)2

−
(
a′′

a

)}
= σ1(z)δ

(
z − z1

)
+ σ2(z)δ

(
z − z2

)
(2.25)

This is a second-order differential equation for a(z) and is our final form.

We now look to find our equation of motion for N(z) via the same process and we will see
that a second equation can also be derived for a(z) from this. We begin with the same
Lagrangian as before.

L = Na4
√
−q

(
− 2Λ +

M3
5

2

(
12λ

a2
− 12

(
a′

a

)2 1

N2
+

8N ′

N3

(
a′

a

)
− 8

N2

(
a′′

a

)))
−
√
−qσ1a

4(z)δ
(
z − z1

)
− σ2a

4(z)δ
(
z − z2

)
(2.26)

There are no second-order terms for N(z), so we can use the Euler-Lagrange equation for
only first-order dependence

∂L
∂Y

− d

dt

(
∂L
∂Ẏ

)
= 0 (2.27)
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Which yields the equation of motion for N(z) (see appendix B).

−2Λ +
M3

5

2

(
12λ

a2
− 12

(
a′

a

)2 1

N2

)
= 0 (2.28)

We can use the same trick as before and choose f(z) such that Ñ(z) = 1, which implies
that Ṅ(z) = 0 and so our equation of motion reduces to

a4

(
−2Λ +

M3
5

2

(
12λ

a2
+ 12

(
a′

a

)2

+ 8
a′′

a

))
− 8

M3
5

2

((
3a2

a′

)2

+
a3

a′

)
= 0 (2.29)

⇒ −Λ + 3M3
5

(
λ

a2
−
(
a′

a

)2
)

= 0 (2.30)

Which is a first-order differential equation in a(z).

2.1.3 The Warp Factor

Now that we have our equations of motion, our next task is to solve them and calculate a(z)
in the bulk. We study a generalisation of the RS1 model and allow the branes to exhibit
intrinsic curvature. The consequence is that both branes can have curvature, λ = 0, λ > 0
or λ < 0, corresponding to a Minkowski, De-Sitter or anti-De Sitter brane respectively.
This is not new and the generalisation was done almost immediately after the RS1 model
was first published [22]. Flat branes are called critical branes whilst branes with non-zero
curvature are known as non-critical branes. We consider all three cases of curvature and
look to find the form of the warp factor in the bulk in each case.

For RS1 to be a solution to the hierarchy problem, we require the fundamental 5d
Planck scale to be of similar size to the fundamental weak scale. By scaling our 4d non-
factorisable metric by the warp factor, we also change the fundamental Planck scale when
measured as an effective scale on the brane. Following this, we realise the warp factor must
decrease as it moves through the bulk in order to produce a smaller effective Planck scale
on the TeV brane, which will be of use when we choose an ansatz to solve our equations
of motion in the different cases for λ.
For critical branes, λ = 0, and (2.25) reduces to

−2Λ− 3M3
5

(
a′′

a
+

(
a′

a

)2
)

= σ1δ (z − z1) + σ2δ (z − z2) (2.31)

We are concerned with the behaviour of the warp factor in the Bulk, away from the branes,
where the delta functions cause the brane contributions on the right hand side of (2.31)
to vanish. It then reduces to

−2Λ− 3M3
5

(
a′′

a
+

(
a′

a

)2
)

= 0 (2.32)

Using λ = 0, we can simplify (2.30) to yield

−2Λ + 6M3
5

(
−
(
a′

a

)2
)

= 0 (2.33)

Since (2.33) is a first-order differential equation, we choose this equation first to solve for
a(z) since we only require one constant of integration and will be easier to solve.
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Making note of its form, we choose to substitute an ansatz of a(z) = Ae±κz into (2.33),
which generates the solution

a(z) = Ae
±
√

−Λ

3M3
5
z

(2.34)

where A is a constant of integration and we identify

κ =

√
−Λ

3M3
5

(2.35)

Note that both solutions are valid

a+(z) = Ae

√
−Λ

3M3
5
z

(2.36)

a−(z) = Ae
−
√

−Λ

3M3
5
z

(2.37)

and are in correspondence with the Z2-symmetry on the branes. Our warp factor is expo-
nential, and we are able to represent its behaviour graphically as in Figure 2.1. Notice the
peak centred around the Planck brane at z = z1 = 0 and the trough at the TeV brane at
z = z2 = rc, where rc is the radius of compactification of our circular S1 z dimension. We
see that the solution a+(z) occupies the space z < z1 and z > z2, while the bulk contains
a−(z).

Figure 2.1: A Plot of the Warp Factor in the RS1 Model showing the exponetial decay
from one brane to another. rc is the distance of the second brane from the brane centered
at z = 0 [34].
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For non critical branes, λ ̸= 0, we again choose to solve our first order equation of motion
in the bulk. To remind ourselves, with λ ̸= 0 we have

−Λ + 3M3
5

(
λ

a2
−
(
a′

a

)2
)

= 0 (2.38)

We take Λ = −3M3
5κ

2, which leaves us with

κ2 +
λ

a2
=

a′2

a2
(2.39)

We let

a =

√
|λ|
κ

b (2.40)

so that (2.39) becomes

κ2
[
1 +

sign (λ)

b2

]
=

b′2

b2
(2.41)

Then we set

z =
1

α
y =⇒ ∂z = κ∂y (2.42)

Applying (2.42) to (2.41), we yield

b2y = b2 ± 1 (2.43)

where the ±1 correspond to positive and negative cases of λ respectively, and by denotes
the derivative of b with respect to y. We can rearrange (2.43) and take the integral of
both sides. ∫

db√
b2 ± 1

= ±
∫

dy (2.44)

For λ > 0, ∫
db√
b2 + 1

= +

∫
dy (2.45)

This is a standard trigonometric integral with the result

sinh−1 (b) + c = ±y (2.46)

We recall that we defined b = κa√
|λ|

and y = κz. Substituting these back into (2.46) and

rearranging for a(z) we find

a (z) =

√
|λ|
κ2

sinh (±κz + c) (2.47)

For λ < 0, we can start from ∫
db√
b2 − 1

= ±
∫

dy (2.48)

which is another standard integral. This becomes

cosh−1 (b) + c = ±y (2.49)

Once again recalling (2.40) and (2.42), and substituting into (2.49), we arrive at our third
equation for the warp factor

a (z) =

√
|λ|
κ2

cosh (±κz + c) (2.50)
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We see from our work that there are three separate equations for the warp factor depending
on which regime for λ we choose.

a (z) =



√
|λ|
κ2 sinh (±κz + c) if λ > 0

Ae±κz if λ = 0√
|λ|
κ2 cosh (±κz + c) if λ < 0

(2.51)

All solutions contain κ, where κ =
√

−Λ
3M3

5
, which forces Λ < 0 to produce any real-valued

functions and requires that the bulk is an AdS5 spacetime.

2.1.4 Calculating Brane Tensions

We recall that by construction the Randall-Sundrum Braneworld model has Z2-symmetry
at the domain walls z = z1 and z = z2 as shown in figure 2.1. The consequence of this
symmetry is that it imposes the boundary conditions on the branes a(z1 − ϵ) = a(z1 + ϵ)
and a(z2− ϵ) = a(z2+ ϵ), which will be employed throughout the calculations that follow.
We use this boundary condition and the bulk equations of motion to calculate our brane
tensions in the different cases of λ. We begin with the critical branes, λ = 0.
For the brane at z = z1, we integrate equation (2.32) across an infinitesimal region con-
taining z1 as follows∫ z1+ϵ

z1−ϵ
dz

(
a′′

a
+

(
a′

a

)2

− 4κ2

M3
5

)
=

−σ1
3M3

5

∫ z1+ϵ

z1−ϵ
dzδ (z − z1)−

σ2
3M3

5

∫ z2+ϵ

z2−ϵ
dzδ (z − z2)

(2.52)
In this range, a(z) is continuous but finite, a′(z) is finite but not continuous and a′′(z)
diverges on the brane. Making note of these properties it is clear that when performing the
integration over this infinitesimal region, we retain only the contribution of the divergent
function a′′(z) to get a finite answer, with all other terms being lost. We can therefore
effectively rewrite our integral as

1

a (z1)

∫ z1+ϵ

z1−ϵ
dza′′ (z) =

−σ1
3M3

5

∫ z1+ϵ

z1−ϵ
dzδ (z − z1) (2.53)

Which yields
a′
(
z+1
)
− a′

(
z−1
)

a (z1)
=

−σ1
3M3

5

(2.54)

Where a′(z+1 ) = a′(z1 + ϵ), and corresponds to the warp factor in the infinitesimally small
region z1 + ϵ and a(z1) corresponds to both the positive and negative solutions for the
warp. Note that at this stage, we employ our boundary conditions and let a(−z1) = a(z1).
Then equation (2.54) becomes

−2κ =
−σ1
3M3

5

(2.55)

We rearrange to obtain the brane tension at z = z1

σ1 = 6κM3
5 (2.56)

We can repeat the same process for the brane at z = z2,

1

a (z2)

∫ z2+ϵ

z2−ϵ
dza′′ (z) =

−σ2
3M3

5

∫ z2+ϵ

z2−ϵ
dzδ (z − z2) (2.57)
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Which yields
a′
(
z+2
)
− a′

(
z−2
)

a (z2)
=

−σ2
3M3

5

(2.58)

=⇒ 2κ =
−σ2
3M3

5

(2.59)

The brane tension on the second brane, σ2, is

σ2 = −6κM3
5 (2.60)

We notice that our brane tensions have equal magnitude but are of opposite sign. Notice
that the positive brane tension corresponds to the peak in a(z), as seen in Figure 2.1.
Recalling that Λ = −3M3

5κ
2, we find a fine-tuning of the brane tensions against the Bulk

Cosmological Constant, Λ. Recalling that Λ = −3M3
5κ

2,

σ2 =
(
6κM3

5

)2
=

(
6

√
−Λ

3M3
5

M3
5

)2

=⇒ Λ =
−σ2

12M3
5

(2.61)

From equation (2.61) we can see the branes are fine-tuned against the bulk cosmological
constant and that Λ < 0 for all σ, again implying the Bulk is an example of an AdS5

spacetime. The negative cosmological constant, Λ, prevents gravity from leaking into
the bulk at low energies. The implication of this is that the RS1 model doesn’t rely on
compactification to localise gravity on the brane but instead on the curvature of the bulk.
This is why RS1 is sometimes referred to as an alternative to compactification.
We now consider the non critical branes, λ ̸= 0. In both cases, λ > 0 and λ < 0, we
proceed in the same way as before, integrating equation (2.25) over infinitesimal regions
across both branes. In both cases the only non vanishing term is still the divergent a′′(z).
Then, for both cases, we proceed from equations (2.54) and (2.58).
At z = z1 we have

a′
(
z+1
)
− a′

(
z−1
)

a (z1)
=

−σ1
3M3

5

(2.62)

At z = z2 we have
a′
(
z+2
)
− a′

(
z−2
)

a (z2)
=

−σ2
3M3

5

(2.63)

Analysis of equations (2.62) and (2.63) gives us the following brane tensions.
For λ > 0,

σ1 = 6κM3
5 coth (κz1 + c) (2.64)

σ2 = −6κM3
5 coth (κz2 + c) (2.65)

For λ < 0,
σ1 = 6κM3

5 tanh (κz1 + c) (2.66)

σ2 = 6κM3
5 tanh (κz2 + c) (2.67)

We see in both cases, the branes have opposite sign but are not necessarily of equal
magnitude. Since the brane tensions may be different magnitudes, we can still find a
brane tension - bulk cosmological constant relation for our non-critical branes, but we
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must have one relation for σ1 and another for σ2. We will do this by using the index
i = 1, 2 to represent σ1 and σ2 respectively.
For λ > 0, when we have De-Sitter branes we yield

σ2
i =

(
6κM3

5 coth (κzi + c)
)2

(2.68)

Where, κ =
√

−Λ
3M3

5
. Using this, we find the relation

Λ =
−σ2

i

12M3
5 coth (κzi + c)2

(2.69)

We then see for all σ1 and all σ2, the brane tensions are fine tuned against the bulk
cosmological constant, which is clearly negative for all σ1, σ2, thus forcing the bulk to be
an AdS5 spacetime.
Similarly, we can calculate this relation for our anti De-Sitter branes, λ < 0, and yield

Λ =
−σ2

i

12M3
5 tanh (κzi + c)2

(2.70)

Again, we see the bulk is an example of an AdS5 spacetime for all σ1 and all σ2.

2.1.5 Solutions

So far we have found the form for the warp factor in the bulk for all cases of λ and found
the corresponding brane tensions. For a complete set of solutions for the warp factor,
with their corresponding brane tensions, we must fix our constants of integration in the
equations in (2.51), c for λ ̸= 0 and A for λ = 0. We have the freedom to set a(0) = 1,
allowing us to find our constants of integration. Trivially, for λ = 0 we find A = 1.
For λ > 0,

κ =
√

|λ| sinh c (2.71)

For λ < 0,
κ =

√
|λ| cosh c (2.72)

We can now present our solutions. Recall that N(z) = 1.

a (z) =



√
|λ|
κ2 sinh (±κz + c) , κ =

√
|λ| sinh c if λ > 0

e±κz if λ = 0√
|λ|
κ2 cosh (±αz + c) , κ =

√
|λ| cosh c if λ < 0

(2.73)

The corresponding brane tensions are

σ1 =


6κM3

5 coth (κz1 + c) if λ > 0

6κM3
5 if λ = 0

6κM3
5 tanh (κz1 + c) if λ < 0

(2.74)

σ2 =


−6κM3

5 coth (κz2 + c) if λ > 0

−6κM3
5 if λ = 0

−6κM3
5 tanh (κz2 + c) if λ < 0

(2.75)
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2.1.6 A Solution to The Hierarchy Problem

To solve the hierarchy problem, we need to derive the effective four-dimensional Planck
scale in terms of our five-dimensional terms.
From our derivation of the Ricci Scalar, we recall that R = gzzRzz + gµνRµν . We show in
Appendix C that we can deconstruct the Ricci tensor into a purely four-dimensional piece
and another piece that involves mixing between our four and five-dimensional coordinates,
Rµν = Rµν(q) + ..., where the first term is our 4d piece and the rest involves mixing.
Consequently, we can split the Ricci scalar into four and five-dimensional terms. Recall
that we set N(z) = 1 so that gzz = 1.

R = Rzz +
1

a2
qµνRµν(q) + ... (2.76)

⇒ R5 =
1

a2
R4(q) + ... (2.77)

where R5 denotes the five-dimensional Ricci scalar and R4 denotes the four-dimensional
Ricci scalar. With this result, we can separate the Einstein Hilbert action for our model
into four and five-dimensional terms.

S =

∫
dzd4x

√
−g

M3
5

2
R(g) =

∫
dza4

√
−q

M3
5

2
(
1

a2
R4(q) + ...)d4x

=

∫
dz

√
−qa2

M3
5

2
(R4(q) + ...)d4x = (

∫
dza2)

M3
5

2

∫
d4x

√
−qR4(q) + ...

(2.78)

Note, the integral on the extra dimension is unanimous with the volume element for the
extra dimension. This is important since the effective four dimensional Planck Scale, MPL,
is determined by the five dimensional Planck Scale, M3

5 , and the volume of the the fifth
dimensional space [35], Vn, by the relation

M2
PL = M2

4 = M3
5Vn (2.79)

where we have identified

Vn =

∫
dza2 (2.80)

Before progressing further, we refer back to figure 2.1 and define three distinct regions,
regions 1,2 and 3. Region 1 is the space z < z1, region 2 is the space z1 < z < z2 and
region 3 is the space z > z2.
We can substitute (2.80) back into equation (2.79), and perform an integral over regions
1 and 2.

M2
4 = M3

5Vn = M3
5

∫ z1+rc

z1−rc

dza2 (2.81)

Where a2 = e±2kz, depending on the region. We also remind ourselves the extrinsic
curvature, λ, is zero. Equation (2.81) becomes

M2
4 = M3

5 (

∫ z1+rc

z1

dze−2κz +

∫ z1

z1−rc

dze2κz)

= M3
5

1

2κ
[−e−2κ(z1+rc) + e−2κz1 + e−2κz1 − e2κ(z1−rc)]

= M3
5

1

2κ
[2e2κz1 − 2e2κz1e−2κrc ]

(2.82)

where in the last line we use the continuity conditions on the brane that e−2κz1 = e2κz1 =
a2(z1).
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⇒ M2
4 = M3

5

1

2κ
[2a2(z1)− 2a2(z1)e

−2κrc ] = M3
5

1

2κ
2a2(z1)[1− e−2κrC ] (2.83)

Then, we reach our final result and the four dimensional effective Planck scale is

M2
4 = M3

5

a2(z1)

κ
[1− e−2κrc ] (2.84)

where if we set z1 = 0 and allow a(0) = 1 we have

M2
4 =

M3
5

κ
[1− e−2κrc ] (2.85)

It can also be shown that an observer on the brane will measure the Higgs mass to be

mH = e−κrcm0 (2.86)

where m0 is the fundamental Higgs mass [30]. If the fundamental Planck scale, M3
5 , and

the fundamental Higgs mass, m0, are both of order 1018 GeV, we have no hierarchy in the
five dimensional theory. The effective theory, as seen by an observer on the brane, will
yield values of the Higgs mass, mH , and the Planck scale, M2

4 , controlled by the equations
(2.85) and (2.86). The effective theory then is able to make predictions consistent with
observation through a rescaling of our fundamental values via the warp factor, where the
extent of the rescaling depends on κrc. Consequently, our ability to produce a viable so-
lution is intimately linked to the brane seperation rc. If the fundamental Planck scale and
the fundamental Higgs mass are both of order 1018GeV, we see we require eκrc ≈ 1015 to
ensure that mH ≈ 103GeV and M4 ≈ 1018GeV, as observed in nature [30]. Alternatively,
we could take the opposite approach and set the fundamental Higgs mass and the funda-
mental Planck mass to be much smaller, as long as they are both set to the same scale,
and reproduce the correct effective theory. The RS1 model is able to provide a solution to
the hierarchy problem without the need for the extra dimension to be large and therefore
doesn’t introduce new hierarchies between the weak scale and the compactification scale,
unlike many other proposed solutions.

2.2 RS2

Since all Standard Model fields are bound to the brane, we must be able to reproduce
Newtons laws on the brane. Previous braneworld models achieve this by constraining the
extra dimension to be small and compact. The RS2 model removes this constraint, and is
able to reproduce Newtons laws on the brane despite having an infinite extra dimension.
Gravity is localised on the brane due to the curvature of our AdS5 bulk, allowing us
the freedom to extend the extra dimension to infinity whilst remaining consistent with
Newtons laws on the brane. The RS2 model is no longer concerned with the hierarchy
problem, so we sacrifice our solution to the hierarchy problem to remove the constraint
set on the size of the extra dimension.
We begin with the familiar RS1 model and sending the negative tension brane to infinity,
z2 −→ ∞. We are left with an infinite bulk and a single brane with positive tension at
z = 0, embedded in AdS5 space. The standard model fields are bound to the remaining
brane, so that in this model we exist as observers on the brane with positive tension rather
than the brane with negative tension as in the RS1 model. Our metric remains the same
as in equation (2.1), to remind ourselves we have

ds2 = N2(z)dz2 + a2(z)qµν(x)dx
µdxν (2.87)
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where before we found, in the bulk for λ = 0, a(z) = e−κz and N(z) = 1. Then equation
(2.87) becomes

ds2 = dz2 + e−2κzqµν(x)dx
µdxν (2.88)

We can represent the behaviour of the warp factor in the RS2 model graphically as in
Figure 2.2.

Figure 2.2: Behaviour of the Warp Factor in the RS2 Model, with a single brane of positive
tension at z = 0 [34].

The RS2 model may not be a viable phenomenology when combined with bimetric gravity,
since two branes are needed to support a braneworld bi-gravity set-up [20]. In this paper,
we choose to proceed with the RS1 model for this reason. Despite this, if a viable solution
is found using an RS1 set-up, it could be of interest to see what results an RS2 model
would yield since Randall -Sundrum bimetric theories have not been explored.
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Chapter 3

Massive Gravity

3.1 Non-Trivially Interacting Massless Helicity 2-Particles

Without Einstein’s leap of insight, the discovery of General relativity would likely have
been delayed several decades until advancements in field theory would allow field theorists
of the 1940s / 1950s to arrive at general relativity. While Einstein and the field theorists
would derive the same general relativity, their approaches would be drastically different.
In many ways, field theorists’ path to general relativity would be far more logical and lead
uniquely to general relativity. Einstein’s approach was not a logical one; general coordinate
invariance and the equivalence principle were the insights that led Einstein to general
relativity, but both general coordinate invariance and the equivalence principle are not
fundamental properties of general relativity and do not lead uniquely to general relativity.
In fact, we can make any Lagrangian invariant under general coordinate diffeomorphisms
through the Stuckelberg trick. The most accurate way to define general relativity is as
the theory of a non-trivially interacting massless helicity 2 particle, the graviton. This
statement is the foundation of the field theorist’s approach. Field theory tells us that in
a Minkowski spacetime, degrees of freedom are particles that are represented and carried
by fields, defined by their spin. Long-range forces are carried by massless bosonic fields
of integer spin, m = 0. We can characterize massless particles by their helicity. For
a helicity 2 particle, general coordinate invariance is the required gauge symmetry to
produce a theory with consistent self-interactions. It is important to realise that general
coordinate invariance is a gauge symmetry and not a fundamental property of general
relativity. We can always eliminate gauge symmetries by fixing the gauge and we can create
gauge symmetries through the Stuckelberg trick. This discussion of gauge symmetries will
become important when we consider theories of massive gravity and the naturalness of
solutions to such theories.

3.2 Introduction to Massive Gravity

Since General Relativity is the theory of a non-trivially interacting massless helicity 2 par-
ticle, the first obvious deformation we can consider is to disregard the massless condition
and give mass to the graviton. The first to develop a model of massive gravity was Fierz
and Pauli who, in 1939, derived the Fierz -Pauli action[12]

S =

∫
d4x− 1

2
∂λhµν∂

λhµν + ∂µhνλ∂
νhµλ − ∂µh

µν∂νh+
1

2
∂λh∂

λh− 1

2
m2
(
hµνh

µν − h2
)

(3.1)
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that models a Lorentz invariant, non-self-interacting, massive spin-2 particle that propa-
gates on a flat Minkowski background. Following this however, developments in the field
stalled until around the 1970s when, during the resurgence of quantum field theory, van
Dam, Veltman and Zarkharov showed how the model diverged significantly from the pre-
dictions of gravitational lensing around massive objects in general relativity[18]. These
predictions differed by as much as 25% and were due to the fact that massive spin-2 fields
propagate with 5 degrees of freedom regardless of the size of the mass[37] as they do not
decouple. Since general relativity is a theory with only two propagating degrees of free-
dom[37], it seems that massive gravity cannot be compatible with it, even in the m −→ 0
limit. This pathology became known as the vDVZ discontinuity[18].
Fortunately, a way to circumvent the vDVS discontinuity was found via the Vainshtein
mechanism only a short while after which argues that the discontinuity belongs only to
the linear theory and can be resolved by invoking higher order terms[42] [3]. Vainshtein
discovered that in the vicinity of large objects, a distance from that object known as the
Vainshtein radius can be identified beyond which non-linearities dominate the lower order
terms meaning the vDVZ discontinuity gives way.

rv ∼
(

M

m4M2
PL

)
(3.2)

Here rv is the Vainshtein radius and m, M and MPL are the masses of the graviton and
large object respectively and is the Planck mass. It was shown also that in the massless
limit m −→ 0, the Vainshtein radius, rv goes to infinity and the vDVZ is removed from
the theory[18]. This period of an apparent resolution was short-lived however and soon
yet another problem was discovered when transitioning to fully non-linear theories that
comprise interactions with the standard model. Issues were already encountered with 5
degrees of freedom and yet the non-linear extensions studied by Bouleware and Deser were
found to propagate with 6, where this 6th extra degree takes the form of a scalar field with
a negative kinetic term, later named as the Boulewere-Deser ghost[5].
Eliminating the extra degree of freedom in the non-linear theory is essential to avoiding
the Boulewere-Deser ghost and Massive gravity was the subject of significant interest
when recently deRham, Gababadaze and Tolley published a solution[38]. They proposed
the most general form of a potential that can be added to an Einstein-Hilbert kinetic
term which constrains the interaction terms in such a way that reduces the total degrees
of freedom of the theory and eradicates the extra scalar degree of freedom belonging to
the Boulware-Deser ghost[38][39][18]. The theory raises the energy cutoff of the effective
theory, at which point the ghost is removed. The resulting ghost-free theories are known
as dRGT theories of massive gravity and they can be written as[17],

S =
M2

PL

2

∫
d4x

√
−g

[
R− m2

2

4∑
n=0

βnSn

(√
g−1η

)]
(3.3)

In this paper, our interest in massive gravity is due to its link to the Cosmological Constant
problem, which we recall as the discrepancy between the observed value of the constant
measured from observations of the expansion of the universe and the value predicted from
vacuum fluctuations in quantum field theory. Massive gravity provides potential solutions
to the problem through the degravitation method. This is a modification where the mass
of the graviton acts as a filtering scale in the coupling of gravity to the cosmological
constant[8]. This effectively shifts the question from why the constant has such a small
magnitude to instead why it gravitates so little, which we are better prepared to answer
and exact details can be found in[32].
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3.3 Multi-Metric Models

Multi-metric theory is a generalisation of the Einstein-Hilbert kinetic term to N, initially
non-interacting, spin-2 fields with each having an associated metric, Planck mass, and
cosmological constant which we can be written as the summation[19]

L =

N∑
I=1

MD−2
I

2

√
−g(I)(R(g(I))− 2Λ(I)) (3.4)

To capture the interactions between multiple metrics, Hinterbichler and Rosen derived a
generalisation of the dRGT ghost-free theory for a single massive graviton in [19], and
produced an interaction term for N interacting spin-2 fields in D-dimensions.

U =
N∑

I1I2...ID=1

T I1I2...ID ϵ̃A1A2...AD
EA1

I1
∧EA2

I2
∧ ... ∧EAD

ID
(3.5)

Here T is a symmetric tensor of coefficients and ϵ̃ is the anti-symmetric epsilon symbol.
This form is far easier to work with than the traditional dRGT potential which uses matrix
square roots. Hinterbickler and Rosen’s term has a veilbein structure instead which is
intuitive as vielbeins can be interpreted as the square root of a metric. Each metric has a
vielbein one-form[18],

EA
I = EA

Iµ(x)dx
µ (3.6)

that relates it back to the flat metric,

g(I)µν
= EA

IµE
B
IνηAB (3.7)

For a theory with only one metric, our potential will only have one term, whereas a bi-
metric theory has two metrics and will have D − 1 terms that we have to find which
mix between the components of the two metrics. In fact, we can see that for arbitrary
dimension, D, with N interacting metrics, we can write the total number of unique terms
as
(
N+D−1

D

)
and the if the number of metrics exceeds the number of dimensions then we

can say there exist no terms that mix terms from all metrics in the system[18]. Combining
this potential with (3.4) forms the action,

S =

∫
dzd4x

N∑
I=1

MD−2
I

2

√
−g(I)(R(g(I))−2Λ(I))+

N∑
I1,I2,...,ID

T I1I2...ID ϵ̃A1A2...AD
EA1

I1
∧EA2

I2
∧...∧EAD

ID

(3.8)

3.4 Bimetric Theory

Having started from the action of a Multi-Metric system, we can now specify from the
general form the specific number of Gravitons we want to include in our system as well as
the number of dimensions we wish to work in. This paper will study a Bimetric system
with two Gravitons and, as we are attempting to combine this with the RS1 regime, we
will specify 5 spacetime dimensions. Using the dRGT interaction term, our action for this
model is[19],

S =

∫
dzd4x

M3
1

2

√
−g(1)(R(g(1))− 2Λ(1)) +

M3
2

2

√
−g(2)(R(g(2))− 2Λ(2)) (3.9)

+
N∑

I1I2...I5

T I1I2...I5 ϵ̃A1A2...A5E
A1
I1

∧EA2
I2

∧ ... ∧EA5
I5
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We now have to find the explicit form of our interaction terms. To do this we will use the
metric we defined previously (2.1) and use it to write a basis of 1-forms for our system Ez

i

and Eα
i ,

ds2i = N2
i (z) dz

2 + a2i (z) qµν (x) dx
µdxν (3.10)

Ez
i = Nidz (3.11)

Eα
i = aie

α (3.12)

qµνdx
µdxν = ηαβe

α ⊗ eβ (3.13)

where qµν is maximally symmetric metric on the branes with curvature λ.

Using the interaction term (3.5), we can write out the form of the interaction term for
our model as,

U = T 11111Ea1
1 ∧ Ea2

1 ∧ Ea3
1 ∧ Ea4

1 ∧ Ea5
1 ϵ̃a1...a5 (3.14)

+T 11112Ea1
1 ∧ Ea2

1 ∧ Ea3
1 ∧ Ea4

1 ∧ Ea5
2 ϵ̃a1...a5

+T 11122Ea1
1 ∧ Ea2

1 ∧ Ea3
1 ∧ Ea4

2 ∧ Ea5
2 ϵ̃a1...a5

+T 11222Ea1
1 ∧ Ea2

1 ∧ Ea3
2 ∧ Ea4

2 ∧ Ea5
2 ϵ̃a1...a5

+T 12222Ea1
1 ∧ Ea2

2 ∧ Ea3
2 ∧ Ea4

2 ∧ Ea5
2 ϵ̃a1...a5

+T 22222Ea1
2 ∧ Ea2

2 ∧ Ea3
2 ∧ Ea4

2 ∧ Ea5
2 ϵ̃a1...a5

Let us look deeper at the first term,

T 11111Ea1
1 ∧ Ea2

1 ∧ Ea3
1 ∧ Ea4

1 ∧ Ea5
1 ϵa1...a5 (3.15)

Using the properties of the Levi-Civita symbol and that

ϵi1...inϵi1...in = n! (3.16)

We can rewrite this as
= 5!T 11111E1

1 ∧ E2
1 ∧ E3

1 ∧ E4
1 ∧ E5

1 (3.17)

and again using (3.11) and (3.12),

= 5!T 11111N1a
4
1dze

2 ∧ e3 ∧ e4 ∧ e5 (3.18)

If write our 4 dimensional metric qµν as

qµν =
∂eα

∂xµ
ηαβ

∂eβ

∂xν
(3.19)

then we can take the determinant of each side,

det (q) =

∣∣∣∣∂eα∂xµ

∣∣∣∣ det (η) ∣∣∣∣∂eβ∂xν

∣∣∣∣ (3.20)

and since det (η) = −1,

det (q) = −
∣∣∣∣∂eα∂xµ

∣∣∣∣2 (3.21)

Thus we can write a jacobian for the transformation between 1-forms and volume elements

J =
√
−q (3.22)
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Using this we can rewrite the wedge product as,

e2 ∧ e3 ∧ e4 ∧ e5 =
√
−qdx2 ∧ dx3 ∧ dx4 ∧ dx5 (3.23)

and so
5!T 11111N1a

4
1dze

2 ∧ e3 ∧ e4 ∧ e5 = 5!T 11111N1a
4
1

√
−qdzd4x (3.24)

which is an explicit form for this term.
We proceed via a similar process for the remaining terms to arrive at our complete inter-
action term,

U = 5!T 11111N1a
4
1

√
−qdzd4x (3.25)

+ 5!T 11112
(
4N1a

3
1a2 +N2a

4
1

)√
−qdzd4x

+ 2 · 5!T 11122
(
3N1a

2
1a

2
2 + 2N2a2a

3
1

)√
−qdzd4x

+ 2 · 5!T 11222
(
2N1a1a

3
2 + 3N2a

2
1a

2
2

)√
−qdzd4x

+ 5!T 12222
(
N1a

4
2 + 4N2a

3
2a1
)√

−qdzd4x

+ 5!T 22222
(
N2a

4
2

)√
−qdzd4x

We can see that the interaction term introduces two new cosmological constant terms that
do not mix metrics and have symmetric tensor coefficients T 11111 and T 22222. We can get
rid of these redundancies by redefining our symmetric tensor coefficients as

T 11111 +
2Λ1

5!
−→ T 11111 (3.26)

T 22222 +
2Λ2

5!
−→ T 22222 (3.27)

S =

∫
dzd4x

M3
1

2
N1a

4
1

√
−qR(g(1)) +

M3
2

2
N2a

4
2

√
−qR(g(2)) (3.28)

+ 5!T 11111N1a
4
1

√
−q

+ 5!T 11112
(
4N1a

3
1a2 +N2a

4
1

)√
−q

+ 2 · 5!T 11122
(
3N1a

2
1a

2
2 + 2N2a2a

3
1

)√
−q

+ 2 · 5!T 11222
(
2N1a1a

3
2 + 3N2a

2
1a

2
2

)√
−q

+ 5!T 12222
(
N1a

4
2 + 4N2a

3
2a1
)√

−q

+ 5!T 22222N2a
4
2

√
−q

Alongside the dRGT potential, there is a second constraint we must impose on the model
if we wish to avoid ghost instabilities when coupling to matter. Hassan, Schmidt-May and
Von Strauss showed in 2012 that we can only couple one metric to matter for the system
to be stable[16], hence we will need to decouple one of our two metrics and the graviton it
corresponds to such that it will not be dynamic. We will choose to couple g1 only and to
do this we will send M3

2 to infinity and, as the Planck mass is proportional to 1
G , where G

is Einstein’s gravitational constant, also send G to zero. This can be thought of as being
analogous to ”switching off” gravity and effectively fixes the values of the metric g2 to be
non-dynamical and Minkowski. In fact, as a consequence of this decision,

N2 (z) = 1, (3.29)
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a2 (z) = 1 (3.30)

and we can show that g1 and g2 correspond to a massive and massless graviton respec-
tively[18]. For an overview of this, we start from the theory of two metrics with canonical
kinetic terms, here in 4 dimensions for simplicity, and some potential to capture the in-
teractions between them

L = M2
1R1

√
−g1 +M2

2R2
√
−g2 − V (g1, g2) (3.31)

supposing we have vacuum solutions to theory, which we will take here to be Minkowski

(again for simplicity), with some perturbations h
(1)
µν and h

(2)
µν ,

g(1)µν = ηµν + h(1)µν (3.32)

g(2)µν = ηµν + h(2)µν (3.33)

We can then insert these solutions back into our Lagrangian and then, expanding in our
perturbations take the leading order corrections to write down a quadratic order action

in, h
(1)
µν ,

S =

∫
d4x− 1

2
∂λh̃

(0)
µν ∂

λh̃µν(0) + ∂µh̃
(0)
νλ∂

ν h̃µλ(0) − ∂µh̃
µν
(0)∂ν h̃

(0) +
1

2
∂λh̃

(0)∂λh̃(0) (3.34)

− 1

2
∂λh̃

(m)
µν ∂λh̃µν(m) + ∂µh̃

(m)
νλ ∂ν h̃µλ(m) − ∂µh̃

µν
(m)∂ν h̃

(m) +
1

2
∂λh̃

(m)∂λh̃(m) − 1

2
m2
(
h̃(m)
µν h̃µν(m) − h̃2(m)

)
This action includes all possible tensor contractions of two powers of h, that have up to
two derivatives[18] and is known as the GR action to quadratic action. We can see that
h(m) possesses a term that the h(0) does not, the Pauli-Fierz mass term. We see the field
count remains the same however instead of h(1) and h(2) we instead have h(0) and h(m),
which are associated with massless and massive gravitons respectively. The terms do not
correspond directly and instead are identified, with higher order terms omitted, as

h̃(0)µν = αh(1)µν + βh(2)µν + . . . (3.35)

h̃(m)
µν = γh(1)µν + σh(2)µν + . . . (3.36)

with the particular combination contingent on coefficients which are themselves dependent
on the two Planck masses M1 and M2. In the limit of sending M2 to infinity, that we
have introduced to decouple our second metric, the coefficients are evaluated such that the
massive graviton is entirely comprised of g1 terms and likewise g2 for the massless. Precise
details on this process can be found in [18]. Applying this decoupling and so (3.29) and
(3.30), we are left with only g1 terms,

S =

∫
dzd4x

M3
1

2
N1a

4
1

√
−qR(g(1))+ (3.37)

+ 5!T 11111N1a
4
1

√
−q

+ 5!T 11112
(
4N1a

3
1 + a41

)√
−q

+ 2 · 5!T 11122
(
3N1a

2
1 + 2a31

)√
−q

+ 2 · 5!T 11222
(
2N1a1 + 3a21

)√
−q

+ 5!T 12222 (N1a+ 4a1)
√
−q

+ 5!T 22222N2a
4
2

√
−q

This is a model of Bimetric massive gravity in 5 dimensions.
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Chapter 4

Constructing Bimetric Gravity in
Randall-Sundrum

We have now laid out all the necessary frameworks for us to proceed with incorporating
Bimetric Gravity into the RS1 model. As this is now in the RS1 model we can reintroduce
our branes back into the action. We will first look at the non-interacting case and then
attempt to introduce the interactions through perturbations of these solutions.
For the non-interacting case, we choose to neglect, for now, any interaction terms in our
model.

S =

∫
dzd4x

M3
1

2
N1a

4
1

√
−q
(
R(g(1))− 2Λ2

)
+

M3
2

2
N2a

4
2

√
−q
(
R(g(2))− 2Λ2

)
(4.1)

−N1a
4
1

√
−q
(
σ1(z)δ

(
z − z1

)
+ σ2δ

(
z − z2

))
(4.2)

When we derive equations of motion for this we reproduce our equations of motion for the
RS1 model, where we have a redefined cosmological constant Λ1 and all a terms and N
terms belong to metric 1.

−2Λ1+3M3
5

{
λ

a2
−
(
a′

a

)2 1

N
+
N ′

N3

(
a′

a

)
− 1

N2

(
a′′

a

)}
= σ1a

3(z)δ
(
z−z1

)
+σ2a

3(z)δ
(
z−z2

)
(4.3)

−Λ1 ++3M3
5

(
λ

a2
− 1

N2

(
a′

a

)2
)

= 0 (4.4)

These solutions were derived previously in Chapter 2 and by adding them to the fixed
second metric solutions we have,

a1 (z) =



√
|λ|
κ2 sinh (±κz + c) if λ > 0

Ae±κz if λ = 0√
|λ|
κ2 cosh (±κz + c) if λ < 0

(4.5)

With N1(z), N2(z) and a2(z) equal to zero for all cases under our chosen constraints and

κ =
√

−Λ1

3M3
5
with our redefined cosmological constant term.

4.1 Background Solutions

Now that we have our solutions we can now attempt to derive our background solutions
for the complete model. We choose to do this, not analytically, but rather by introducing
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the mixing terms through first-order perturbations of our non-interacting solutions as seen
below.

a1 (z) = ā+ ϵδa1

a2 (z) = 1 + ϵδa2

N1 (z) = 1

N2 (z) = 1 + ϵδN2
(4.6)

where ā1 is our non-interacting case solution and δ terms are our perturbations of order
epsilon. Now that now we are considering the interacting case that includes mixing terms
it is essential that we recognise the subtly which means we can now only choose a value
for N1(z) = 1. To understand why, consider the coordinate transformation we applied to
our metric in Chapter 2.1.2,

z −→ f(z) (4.7)

ds2 = N2(f(z))f ′2dz2 + a2(f(z))qµν(x)dx
µdxν (4.8)

We can see that a(z) exhibits gauge invariance and can also deduce that N1
N2

does as well.
In bigravity, there are two diffeomorphisms, one for each metric, however, when we couple
them through interaction terms this is reduced to a single copy. We used N(z)’s lack
of gauge invariance previously to fix the value N1 (z) = 1, however, as N1

N2
is also gauge

invariant if N1 is fixed then we no longer have the freedom to fix N2. With this in mind,
our action becomes

S =

∫
dzd4x

M3
1

2
a41
√
−qR(g(1)) +

M3
2

2
N2a

4
2

√
−qR(g(2)) (4.9)

−N1a
4
1

√
−q
(
σ1(z)δ

(
z − z1

)
+ σ2δ

(
z − z2

))
+ 5!T 11111N1a

4
1

√
−q

+ 5!T 11112
(
4a31a2 +N2a

4
1

)√
−q

+ 2 · 5!T 11122
(
3a21a

2
2 + 2N2a2a

3
1

)√
−q

+ 2 · 5!T 11222
(
2a1a

3
2 + 3N2a

2
1a

2
2

)√
−q

+ 5!T 12222
(
a42 + 4N2a

3
2a1
)√

−q

+ 5!T 22222N2a
4
2

√
−q

To derive a perturbative solution our approach is to find a mtrix equation as follows

M u′ +A u = v(z) (4.10)

where M and A are matrices containing coefficients of our perturbation terms, v(z) cor-

responds to our Tmixing terms and

u =

 δa1δa2
δN2

 u′ =

 δa′1δa′2
δN ′

2

 (4.11)

We suspect a matrix equation of this form could be found by deriving the three possible
equations of motion, for a1(z), a2(z) and N2(z). There will be no equation of motion for
N1(z) as it is still in the background, N1(z) = 1, as in (4.6). The next step after deriving
the equations of motion would be to consider the individual terms that comprise them.
Substitution of our perturbed background solutions, equations (4.6), into our equations
of motion and subtracting the original background equation of motion would yield the
perturbation of the equations of motion. It is important to remember that our T (mixing)

terms correspond to perturbations themselves and the product of the mixing terms with

29



any δa’s or δN ’s would produce perturbations of quadratic order, which we take to be small
and would vanish. Then we suspect terms that include products between the Tmixing terms
and a1, a2 or N2, would reduce to the product of the mixing terms and the background
solutions, i.e Tmixinga1(z) would yield Tmixing ¯a1(z) and would still be a perturbation term
since the mixing term corresponds to a first-order perturbation.

Each equation of motion, once perturbed and after subtracting the background equa-
tion, would then represent the difference in the equations of motion and, hopefully, be a
linear expression of new Tmixing terms (potentially with z dependence) and the compo-
nents of the vectors u and u′. We would then have three euqations of motion and three
unknown variables. This would be a linear system of ordinary differential equations as in
(4.10) which we can use Green’s functions to solve.
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Chapter 5

Discussion

The model we have derived in the final chapter of our paper could present a potentially
interesting phenomenology if it is possible to derive solutions via the method we describe.
For those studying the hierarchy problem this would be especially relevant as we derived
the mechanism by which the warping of the 5-dimensional bulk effectively eliminates the
hierarchy between the fundamental scales thus providing a natural explanation for the
hierarchy in chapter 2. As a theory of Massive Gravity, we have shown our model is not
plagued by the vDVS discontinuity due to the Vainshtein mechanism and have constructed
it such that it is free of the second common pathology of massive gravity theories, the
Boulware-Deser ghost. We ensure this by using the dRGT theory for two interacting
massive spin-2 fields where only one metric is coupled to matter. We can therefore say
with reasonable confidence that the model should be viable from this perspective. In this
case, the solutions should also have relevance to the cosmological constant problem as,
being a theory of massive gravity, there are a variety of regimes by which the discrepancy
could potentially be resolved such as degravitation from Chapter 3.2.

There are situations where our proposed method may fail, in which case a new approach
must be considered. For instance, our suggested approach is to use Green’s functions to
solve the linear system of ordinary differential equations, however, if the system exhibits
any singularities that would necessitate employing higher-order terms then the method
would be unusable as it hinges on the perturbations being of first order only. There would
be negotiating with this situation and a new method would need to be developed. We
propose a second potential solution that could be investigated where one could choose
values for the constants of the symmetric tensor, such that a more agreeable form is
achieved, though we also invite the imagination of future research.

A potential pitfall of our model arises when we consider the stability of the brane
separation. In Chapter 2, we saw, for flat branes, the Randall Sundrum model exhibits
an exponentially warped geometry along the extra dimension, allowing us to re-scale the
Higgs mass and the Planck scale across the separation of the branes. This attribute of RS1
lets us set the scale of the fundamental Higgs mass and the fundamental Planck scale to
eradicate the hierarchy at a fundamental level whilst being able to generate the hierarchy
in an effective theory on the TeV brane, as seen by an observer. The re-scaling is controlled
by κrc, and our ability to reproduce the correct effective theory is intimately tied to the
brane separation rc. Once we fix the scale of our fundamental parameters, we require the
brane separation to be stable to maintain a solution to the hierarchy problem. However,
if we fluctuate the configuration of our metric, a back-reaction causes the branes to blow
apart or crash together and we lose our solution to the hierarchy problem. In general,
the Randall-Sundrum 1 braneworld model has difficulty stabilising the size of the extra
dimension. The problem is that brane separation is not determined by the dynamics of
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our model and for a more general phenomenology, it is crucial to find a mechanism that
stabilises the value of rc. However, hope is not lost as attempts to find such a mechanism
are ongoing with many proposed solutions. Immediately after the release of Randall and
Sundrum’s paper, Goldberger and Wise (GW) showed the introduction of a bulk scalar
field with interaction terms localised to the two 3-branes can generate a potential term
that sets the size of the extra dimension to be of a compactification scale that solves the
hierarchy problem (this is a simplification of the details presented in [14]). A discussion in
the field follows the breakthrough of GW, with more recent papers arguing that, in general,
more is needed to prove the GW mechanism truly stabilises the extra dimension and offer
new, promising re-examinations that supersede the GW mechanism [25]. If a mechanism
is found and proven to stabilise the extra dimension when considering fluctuations to the
configuration of the metric, the model in this paper could be adjusted to include such
a mechanism and conquer a major criticism whilst offering a solution to the hierarchy
problem with greater generality.

In section 3.4, we justified decoupling one metric from matter by stating that only
one metric in a bimetric system can be coupled to matter for the system to be stable.
While this was long believed to be the case, new bimetric theories have recently been
produced with a new matter coupling proposed in terms of a composite metric without
reintroducing the Boulware-Deser ghost [15]. It is shown in [15] the composite metric is a
combination of the regular bimetric metrics, and with the introduction of a new interchange
symmetry, the theory may be protected against the quantum corrections that reintroduce
the Boulware-Deser ghost. This development is of interest to this paper since a matter
coupling that allows a massless spin – 2 field to couple to matter could circumvent the
vDVZ discontinuity [9] [44], mentioned earlier in section 3.2. It would also be interesting
to see if new interaction terms between the massive and massless spin-2 fields are found
and how they would change observational predictions of the theory.

If we can produce solutions to the model in this paper, the question remains: could we
actually detect signals of such a model? While detecting traces of the exact phenomenology
used in this paper are unknown, recent developments in experimental capability show that
both the existence of the RS model and the graviton could be experimentally confirmed.

It is possible to test the RS model experimentally, with the largest probability for
detection being at large-scale collider set-ups like the Large Hadron Collider (LHC) at
CERN. In the RS1 model, the brane separation rc is associated with the vacuum expec-
tation value of a massless scalar, modulus field [14]. The radion, a scalar field in higher
dimensional spacetimes, was introduced to the RS1 model as a quantum fluctuation of
the modulus field rc [4]. The radion has an associated mass that can be calculated and
the detection of it would be an indication that the RS model exists in nature. The LHC
experiments are limited to 7TeV, thus κrc would have to be around 7 for an RS model to
be suitable for LHC experiments [4]. If κrc is around 50, which we proposed in Chapter 2,
the radion is less likely to be found at the LHC since the detection ratio would be smaller.
We can calculate more signatures of the radion (decays and productions) that could be
detectable at the LHC. It is possible for the radion to be discovered at the LHC in the
search for the Higgs since the radion can share the same decay channels as the Higgs,
although the radion is yet to be discovered. This discussion is complex and beyond the
scope of this paper, the details are presented in [14] (for a discussion of the modulus field
rc) and [4] (for a discussion of radion detection).

In 2015, researchers at the Laser Interferometer Gravitational-wave Observatory (LIGO)
observed the first gravitational wave signal [1]. Since then, methods have been proposed to
use data collected at LIGO or similar research centres to detect the existence of gravitons
through the observation of gravitational waves. When gravitational waves propagate near
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massive compact objects, the propagation direction of the wave changes and our known
as lensed waves. If gravitons have mass, the massive graviton changes the lensing pat-
tern of gravitational waves and the dispersion relation and speed of lensed gravitational
waves would be frequency-dependent, leaving potentially detectable traces of the graviton
in the diffraction pattern of the lensed waves [7]. Currently, the graviton has not been
detected but observation of the graviton would yield more credibility to models like the
one discussed in this paper.

Despite the current lack of physical data to support RS and bimetric theories, we should
not be discouraged. It may be the case that these models aren’t realised in nature, but if
this is the case then it may be that our models require modification to yield some variation
of them that can be observed in nature. Alternatively, experimental capabilities might fall
short when trying to detect the traces of these theories and in years to come we will see
the first signals that hint at their existence. Either way, exploring new phenomenology is
at the heart of theoretical research and is essential if we wish to develop superior theories
to those that currently exist.

Due to time constraints, we were unable to find solutions to our model. However, it
is not obvious to us that solutions are unobtainable. If solutions are found, it is impor-
tant to test the viability of those solutions by deriving the Einstein field equations and
Newtons laws on the branes to see if we can reproduce them in some effective theory. If
solutions appear to agree with observation, the implications of our exact phenomenology
are unknown but would certainly improve our understanding of the universe we exist in.
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Appendix A

Derivation of the Euler-Lagrange
Equations for Dependence on
Second Order Derivatives

We need to use the Euler-Lagrange Equations for dependence on second-order derivatives.
To do so we begin by considering a function Y (t, ϵ) = y(t) + ϵη(t) and construct the
parameterised integral

I(ϵ) =

∫
dtL(t, Y (t, ϵ), Y ′(t, ϵ), Y ′′(t, ϵ)) (A.1)

We want to find L such that dI
dϵ |ϵ=0= 0, where ϵ > 0 is small. We can see that

dI

dϵ
=

∫ b

a
dt

(
∂L
∂Y

∂Y

∂ϵ
+

∂L
∂Y ′

∂Y ′

∂ϵ
+

∂L
∂Y ′′

∂Y ′′

∂ϵ

) ∣∣∣∣
ϵ=0

=

∫ b

a
dt

(
∂L
∂Y

η +
∂L
∂Y ′ η +

∂L
∂Y ′′ η

) ∣∣∣∣
ϵ=0

= 0

(A.2)

Using Integration by parts∫ b

a
dt

∂L
∂Y ′ η

′(t) =
∂L
∂Y ′ η(t)

∣∣∣∣b
a

−
∫ b

a
dtη(t)

d

dt

(
∂L
∂Y ′

)
(A.3)

∫ b

a
dt

∂L
∂Y ′′ η

′′(t) =
∂L
∂Y ′′ η

′(t)

∣∣∣∣b
a

−
∫ b

a
dtη′(t)

d

dt

(
∂L
∂Y ′′

)
(A.4)

We have assumed that η(a) = η(b) = η′(a) = η′(b) = 0. Therefore (7) and (8) reduce to∫ b

a
dt

∂L
∂Y ′ η

′(t) = −
∫ b

a
dtη(t)

d

dt

(
∂L
∂Y ′

)
(A.5)

∫ b

a
dt

∂L
∂Y ′′ η

′′(t) = −
∫ b

a
dtη′(t)

d

dt

(
∂L
∂Y ′′

)
(A.6)

We apply integration by parts again on (2.11) which yields

−
∫ b

a
dtη′(t)

d

dt

(
∂L
∂Y ′′

)
= − d

dt

(
∂L
∂Y ′′

)
η

∣∣∣∣b
a

+

∫ b

a
dtη

d2

dt2

(
∂L
∂Y ′′

)
(A.7)
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=

∫ b

a
dtη

d2

dt2

(
∂L
∂Y ′′

)
(A.8)

Substituting back into dI
dϵ we get∫ b

a
dtη

(
∂L
∂Y

− d

dt

(
∂L
∂Y ′

)
+

d2

dt2

(
∂L
∂Y ′′

))
= 0 (A.9)

η is arbitrary and so we choose η = 1. We also have not specified a or b and so L must
satisfy the differential equation

∂L
∂Y

− d

dt

(
∂L
∂Ẏ

)
+

d2

dt2

(
∂L
∂Ÿ

)
= 0 (A.10)

Which is our Euler-Lagrange equation for dependence on second-order derivatives.
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Appendix B

Deriving the terms of the
Euler-Lagrange for a(z) and N(z)

Starting from our Lagrangian,

L = Na4
√
−q

(
− 2Λ +

M3
5

2

(
12λ

a2
− 12

(
a′

a

)2 1

N2
+

8N ′

N3

(
a′

a

)
− 8

N2

(
a′′

a

)))
−
√
−qσ1a

4(z)δ
(
z − z1

)
− σ2a

4(z)δ
(
z − z2

)
(B.1)

we use our Euler-Lagrange equation for second order dependence that we derived in Ap-
pendix A.

∂L
∂Y

− d

dt

(
∂L
∂Ẏ

)
+

d2

dt2

(
∂L
∂Ÿ

)
= 0 (B.2)

For the 1st term we have

∂L
∂a

= −8Na2
√
−qΛ +Na3

√
−qM3

5

{
12λ

a2
− 12

(
a′

a

)2 1

N
+

12N ′

N3

(
a′

a

)
− 12a′′

aN2

)}
− 4

√
−q

(
σ1a

3(z)δ

(
z − z1

)
− σ2a

3(z)δ

(
z − z2

))
(B.3)

The 2nd term is,

∂L
∂ȧ

= Na4
√
−q

M3
5

2

{
−24a2

N2a2
+

8N ′

N3a

}
=

√
−qM3

5

{
4N ′a3

N2
− 12a′a2

N

}
(B.4)

d

dz

(
∂L
∂ȧ

)
=

√
−qM3

5

d

dz

{
4N ′a3

N2
− 12a′a2

N

}
=

√
−qM3

5

(
4N ′′a3

a2
− 8N ′a3

N3
+

12N ′a2a′

N2
− 12a2a′′

N
− 24a′2a

N
+

12N ′a′a2

N2

)
(B.5)

The 3rd term is,
∂L
∂ä

=
−4

√
−qa3M3

5

N
(B.6)
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d

dz

(
∂L
∂ä

)
= −4

√
−qM3

5

d

dz

(
a3

N

)
= −4

√
−qM3

5

(
3a2

N
− a3N ′

N2

)
(B.7)

d2

dz2

(
∂L
∂ä

)
= −4

√
−qM3

5

d
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(
3a′a2

N
− a3N ′

N2

)
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√
−qM3

5

(
24aa′2

N
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12a2a′′

N
− 12N ′a2a′′

N2
− 12N ′a2a′′

N2
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N2
+

8N ′2a3

N3

)
(B.8)

Substituting these terms back into our Euler-Lagrange equation yields the a(z) equation
of motion

− 8Na2
√
−qΛ +Na3

√
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5
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12λ
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(
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)2 1
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(
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a

)}
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√
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(
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)
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(
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−
√
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5

(
4N ′′a3
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N3
+

12N ′a2a′
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− 12a2a′′

N
− 24a′2a

N
+

12N ′a′a2

N2

)

−
√
−qM3

5

(
24aa′2

N
+

12a2a′′

N
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N2
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N2
+

8N ′2a3

N3

)
= 0

=⇒ −2NΛ + 3M3
5

{
λ

a2
−
(
a′

a

)2 1

N
+

N ′

N3

(
a′

a

)
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N2

(
a′′

a
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=

− σ1a
3(z)δ

(
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)
+ σ2a

3(z)δ
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)
(B.9)

For the N(z) equation of motion, we have first order dependence of N(z) in our action
and thus use a standard Euler-Lagrange equation

∂L
∂N

+
d

dz

(
∂L
∂Ṅ

)
= 0 (B.10)

For the 1st term

∂L
∂N

= a4

(
−2Λ +

M3
5

2

(
12λ

a2
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(
a′

a

)2 1

N2
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a′

a
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a

1

N2
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(B.11)

For the 2nd Term

∂L
∂Ṅ
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(
M3

5

2

(
8
a′

a

1
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5

2
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2
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3
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(B.12)
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Substituting our terms back into the Euler-Lagrange equation generates our N(z) equation
of motion

a4

(
−2Λ +

M3
5

2
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12λ

a2
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(
a′

a

)2 1
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a
+ 8
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a

1
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−a4
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8
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2
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3
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5
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(
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=⇒ −2Λ +
M3

5

2

(
12λ

a2
− 12

(
a′

a

)2 1

N2

)
= 0 (B.14)
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Appendix C

Derivation of the Ricci Scalar

We calculate the Christoffel connections in the usual way, using the formula

Γa
bc =

1

2
gad (∂cgbd + ∂bgdc − ∂dgcb) (C.1)

paying attention to the constraints in equations (2.2).
We consider the possible Christoffel connections through different combinations of the
four and five-dimensional coordinates, using our usual convention that Greek indices rep-
resent four-dimensional coordinates and Latin indices represent five-dimensional coordi-
nates. The only non-vanishing connections turn out to be

Γµ
αβ = Γµ

αβ(q) =
1

2
gµγ (∂βgαγ + . . .) =

1

2

1

a2
qµγ

(
∂β
(
a2qαγ

)
+ · · ·

)
=

1

2
qµγ (∂βqαγ + · · · )

(C.2)

Γz
µν =

1

2
gzz(∂νgµz + ∂µgzν − ∂zgµν) =

1

2

1

N2
(−∂z(a

2qµν)

=
1

2

1

N2
(−2a′aqµν) = −a′a

N2
qµν = − a′

aN2
gµν

(C.3)

Γµ
zν = Γµ

νz =
1

2
gµα(∂νgzα + ∂zgαν − ∂αgνz) =

1

2
gµα(∂zgαν)

=
1

2

1

a2
qµα(∂z(a

2qαν)) =
1

2

1
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qµα(2a′aqαν) =

a′

a
δµν

(C.4)

Γz
zz =

1

2
gzz(∂zgzz) =

1

2N2
∂zN

2 =
1

2N2
2N ′N =

N ′

N
(C.5)

Now we have all the ingredients to construct our Ricci tensor, Rac. We use the formula
for the Ricci tensor, found by contracting the Riemann tensor, as shown

Rac = −∂aΓ
b
bc + ∂bΓ

b
ac + Γe

caΓ
b
be − Γe

cbΓ
b
ae (C.6)

Note that Rµz = Rzµ = 0. Substituting our Christoffel connections into our equation for
the Ricci tensor we yield

Rzz = −∂z(Γ
z
zz + Γµ

µz) + ∂zΓ
z
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(C.7)
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Rµν = −∂µΓ
µ
αν + ∂αΓ

α
µν + Γα

µνΓ
β
βα − Γα

µβΓ
β
να + ∂zΓ

z
µν + Γz

µν(Γ
α
αz + Γz

zz)− Γα
µzΓ

z
να − Γz

µαΓ
α
νz

(C.8)
The first four terms in (C.8) are purely four-dimensional, and together constitute the full
Ricci tensor corresponding to the four-dimensional maximally symmetric metric, qµν , with
curvature λ. We know that a four-dimensional Ricci tensor for a maximally symmetric
metric is Rµν = 3λqµν . Substituting this back into our equation we get

⇒ Rµν = 3λqµν + ∂z(−
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(C.9)

By contracting the Ricci tensor with the inverse metric we obtain

R = gabRab = gµνRµν + gzzRzz (C.10)
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